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Abstract
In the framework of the Euclidean path integral approach we derive the exact
formula for the general N-point chiral densities correlator in the Schwinger
model on a torus.

PACS numbers: 11.10.Mn, 11.15.Tk

1. Introduction

The Schwinger model [1] (SM) (two-dimensional QED with massless fermions) on a Euclidean
torus T 2 is exactly soluble [2–4], and in many calculations it would be useful to have an
expression for the general N-point correlation function of chiral densities.

It is well known that in this model the ‘photon’ acquires a mass due to chiral anomaly and
fermions disappear from the physical spectrum.

There are some features of the SM which are similar to those of QCD. Fermion condensate,
mass generation, dynamical symmetry breaking and confinement are among them. In both
models instantons are supposed to be responsible for some nontrivial vacuum expectation
values [5–7].

Work on a torus is desirable for several reasons. Firstly, by defining the model on
a finite volume we get rid of infrared problems. Compactification makes mathematical
manipulations more rigorous, topological relations become more precise and transparent.
One should remember that the fermion path integrals have no meaning unless defined using a
discrete basis.

Secondly, in this case we have a model with nontrivial topology in which we can find
explicitly fermionic zero modes and Green’s functions in all topological sectors. The presence
of topologically nontrivial configurations of the gauge field (instantons) and fermionic zero
modes allows in path integral framework the reproduction of the structure of the SM found in
the operator formalism [8].

Thirdly, a compactification on a torus allows us to find finite temperature and finite size
effects and is appropriate to the systematic analysis of the lattice approximation. It is a torus
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which is most naturally approximated by the finite cubical lattice on which the numerical
calculations are performed [9]. Interest in finite-temperature calculations in quantum field
theories (T �= 0 QFT) (or relativistic quantum statistics) is explained by the fact that there
are some phenomena (early universe, ultrarelativistic heavy ion collisions, baryon number
violating processes, etc) which should be described by T �= 0 QFT. Another motivation is
purely theoretical: consideration of the model at finite temperature (and finite size) can test
its consistency and reasonableness and deepen one’s understanding of its structure.

Finally, torus and circle are particularly appropriate for studying the relation between the
Hamiltonian and path integral approach in the gauge theory with massless fermions [10, 11].

Thanks to its full solvability the SM may also be used to test various ideas related to
nonperturbative structure of quantum field theory, in particular it is a good laboratory to
investigate its topological aspects [12, 13].

Bardakci and Crescimanno were the first to use the path integral approach to explore the
role of nontrivial topological configurations in the two-dimensional fermionic model relevant
in the context of string compactification [14]. They were able to show that certain correlation
functions which, being zero for the trivial topology, considerably change by the nontrivial
topological effect. Following the ideas of Bardakci and Crescimanno, Manias, Naon and
Trobo studied the behaviour of correlation functions of fermion bilinear operators in the SM
with topologically nontrivial gauge configurations in the infinite spacetime [15]. Two- and
four-point correlation functions in the SM on the torus have been calculated in [2, 16]. The
authors of the paper [17] considered a six-point correlation function in this model which due
to some technical difficulties they managed to calculate only at finite temperature but in the
infinite space. They also made a conjecture about the explicit expression for the N-point
correlator of chiral densities again at finite temperatures but in the infinite space.

The paper is organized as follows. In section 2, we briefly review the results previously
obtained for the SM on the torus in the Euclidean (path integral) approach [2–4] and relevant
for the present consideration. In addition to these results we give some new information
which concerns the possible choice of the zero modes and fermionic Green’s functions in the
nontrivial topological sectors. Section 3 is devoted to the discussion of modular transformation.
The invariance with respect to this transformation helps us in the following to determine some
proportionality constants. In section 4, which is the central part of the present work, we obtain
our main result. The last section is reserved for conclusions and the discussion of possible
directions of the future investigation.

In the appendix we present some details of the thermodynamic and zero-temperature
limits.

2. A brief review of path integral formulation of the SM on the Euclidean torus

The SM action on the Euclidean torus T2 (0 � x1 � L1, 0 � x2 � L2) reads

S =
∫
T2

d2x
(

1
2F 2

12(x) + ψ̄(x)γµ(∂µ − ieAµ(x))ψ(x)
)

(1)

where F12(x) = ∂1A2(x) − ∂2A1(x) is a field strength. We use the conventions and notation
used in [3, 2]. The evaluation of quantum-mechanical expectation values (QMEV) in the path
integral formulation

〈�[ψ̄, ψ,Aµ]〉 = 1

Z

∫
D[ψ, ψ̄,Aµ]�[ψ̄, ψ,Aµ] e−S[ψ̄,ψ,Aµ] (2)
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where the Z factor (the partition function)

Z =
∫

D[ψ, ψ̄,Aµ] e−S[ψ̄ ,ψ,Aµ] (3)

gets the following form for QMEV of fermion fields [2]:〈
ψα1(x1)ψ̄β1(y1) · · ·ψαN

(xN)ψ̄βN
(yN)

〉
= Z−1

∑
k=0,±1,...,±N

L
|k|
1

∫
Ak

DA e−S[A]det′[L1γµ(∂µ − ieAµ)]

×
∑
Pi

(−1)pi

∑
Pj

(−1)pj χ̂ (1)
αi1

(
xi1

) · · · χ̂ (|k|)
αi|k|

(
xi|k|
)

¯̂χ(1)

βj1
(yj1) · · · ¯̂χ(|k|)

βj|k|

(
yj|k|
)

×S
(k)
αi|k|+1 βj|k|+1

(
xi|k|+1, yj|k|+1; A

) · · ·S(k)
αiN

βjN

(
xiN , yjN

; A
)
. (4)

Here we have already performed the fermion integration
∫
D[ψ, ψ̄ ] over the fermionic

Grassmann variables. The sum is taken over all possible permutations Pi = (i1, i2, . . . , iN ) and
Pj = (j1, j2, . . . , jN) of (1, 2, . . . , N), (−1)pi ((−1)pj ) is a parity of the permutation Pi (Pj ).
χ̂ (n)(x), ¯̂χ(n)(y), n = 1, . . . , |k| is an orthonormal set of the zero-mode wavefunctions and
S(k)(x, y; A) is a Green’s function of the dimensionless D[A] = L1γµ(∂µ − ieAµ) operator
with a gauge field Aµ from the topological sector Ak, det′[D(A)] is a product of its nonzero
eigenvalues. In the following subsections these objects will be described in detail.

Let us discuss the topological origin and the physical meaning of different parts of this
expression for the SM on the 2d torus.

2.1. Topology of U(1)-gauge fields Aµ(x) on the torus

The topology of U(1)-gauge fields on T2:

Aµ(x) = C(k)
µ (x) + tµ + εµν∂νb(x) + ∂µa(x) (5)

is given by the decomposition of Aµ into Chern classes together with the Hodge decomposition
[18]. C(k)

µ (x) = − πk
eL1L2

εµνxν , a gauge potential in the Lorentz gauge which leads to a constant

field strength Fµν(x) = 2πk
eL1L2

εµν of the stationary gauge action. It belongs to the Chern class
with a topological charge (topological quantum number) e

2π

∫
T2

F12 d2x = k, and plays the
role of an instanton in our model. It defines a connection of a principal nontrivial U(1)-bundle
over T2 with transition functions �ν(x):

Aµ(x + L̂ν) = Aµ(x) − i

e
�−1

ν (x)∂µ�ν(x).

In our gauge the transition functions are gauge transformations:

�1(x) = e
π ik

x2
L2 �2(x) = e

−π ik
x1
L1 (6)

and describe the continuation of C(k) in the U(1)-bundles along a cycle in T2. tµ is a
harmonic potential: � tµ = 0, called a toron field. It is a zero mode of the gauge field
and is restricted to 0 � tµ < Tµ, where Tµ ≡ 2π

eLµ
. εµν∂νb(x) describes gauge-independent

‘deformations’ of C(k)
µ (x), a(x) is a pure local gauge: ∂µa(x) = − i

e
e−iea(x)∂µ eiea(x). Large

gauge transformations on T2: �(x) = exp 2π i
(
m1

x1
L1

+ m2
x2
L2

)
transform the toron field

according to tµ → tµ + Tµmµ. The Hodge decomposition leads to a product decomposition
of the functional measure appearing in the path integral formulation∫

DA =
∑

k

∫
DA(k) =

∑
k

∫ Tµ

0
dtµ

∫
Da

∫
Db. (7)
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2.2. Fermionic zero modes χ(x)

The Atiyah–Singer index theorem for Dirac equation [18] states that the number of solutions
with spin parallel minus the number of solutions with spin anti-parallel is equal to |k|. The
fermionic zero modes are solutions of the Dirac equation satisfying the periodic boundary
conditions described by the transition functions �ν(x) of the U(1)-bundle:

γµ(∂µ − ieAµ)χ̂(x) = 0 with χ̂(x + L̂ν) = �ν(x)χ̂(x). (8)

In future we will also consider the operator

D0 = D|a=b=0 = γµ

(
∂µ − ie

(
tµ + C(k)

µ

))
. (9)

Then χ̂ (j)(x) = eiea(x)+eγ5b(x)χ(j)(x), where χ(j)(x) is a zero mode of the D0 operator, which
can be explicitly expressed by Jacobi’s θ -functions [19, 20]. The most general expression for
the zero modes of the D0 operator with positive chirality (k > 0) in the Lorentz gauge takes
the form [21] (j = 1, . . . , k)

χ(j)(x) =
(

χ
(j)

1 (x)

0

)
(10)

with

χ
(j)

1 (x) =
(

2k

|τ |
)1/4 1

L1
e

2π i
|τ | ζ t̄+

iπk
|τ | zζ− iπ

k
t̄ t̃1

T
(j)

k (z′) (11)

where functions T
(j)

k (z) obey the periodicity conditions

T
(j)

k (z + 1) = T
(j)

k (z) T
(j)

k (z + τ ) = e−iπk(2z+τ)T
(j)

k (z) (12)

and are chosen in such a way that the zero modes (11) are orthonormalized (z′ ≡ z + t̄ /k,
where z ≡ x1+ix2

L1
, ζ ≡ Im z, τ ≡ iL2

L1
and t ≡ t̃2 + i|τ |t̃1, t̃µ ≡ eLµ

2π
tµ, a bar means complex

conjugation). The constant factor on the rhs of equation (11) is chosen for convenience. We
have two explicit solutions. One was presented in [2]

T
(j)

k (z′) = e−π(j−1)2

k
|τ |+2π i(j−1)z′

θ3(kz′ + (j − 1)τ |kτ). (13)

Another has the form

T
(j)

k (z′) = 1√
k
θ3

(
z′ − (j − 1)

k

∣∣∣τ
k

)
. (14)

Note that this is actually the solution found by Sachs and Wipf [4]. In order to see this one
should apply to it the modular transformation considered in section 3.

Of course, each function of the set (14) is a linear combination of the functions of the set
(13), since there is a relation

θ3(z|τ/k) =
k−1∑
l=0

eπ il2 τ
k

+2π ilz
θ3(kz + lτ |kτ). (15)

For the zero modes of negative chirality (k < 0) we have

φ(j)(x) =
(

0

φ
(j)

2 (x)

)
j = 1, . . . , |k| (16)

with

φ
(j)

2 (x) =
(

2|k|
|τ |
)1/4 1

L1
e
− 2π i

|τ | ζ t− iπ |k|
|τ | z̄ζ+

iπ
|k| t t̃1

T
(j)

|k| (z̄′′) (17)

where z̄′′ ≡ z̄ − t
|k| .
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2.3. Regularized effective action �(k)
reg[A]

We have calculated the regularized effective action
�(k)

reg[A] = 2 ln det′(L1γµ(∂µ − ieAµ)) + �reg({Mj }) for different topological sectors. The
result is [2, 3]

�(k)
reg[A] = e2

π

∫
T2

d2x b(x) �b(x) + 2δ0,k ln
∣∣ e−2π |τ |t̃2

1θ1(t|τ )η−1(τ )
∣∣2

− (1 − δ0,k)
{

2 ln detN (k)
A − |k|(ln(2|k|/|τ | − 2π i))

}
+ �reg({Mj }). (18)

As discussed below the first term is a ‘mass term’, see equation (25). The second term
defines the ‘induced toron action’ �(0)[t] (η(τ) is Dedekind’s function). It is induced by
the fermions via the spectral flow of the Dirac operator [11]. In calculating the effective
action for gauge fields from the topological nontrivial sectors k �= 0, one has to separate
the zero modes. The third line contains the determinant of the matrix of the scalar products
of the (non-orthonormal) zero modes N (k)

A , and a weight factor of the nontrivial sectors
[3, 2]. The regularization term �reg{(Mj)} drops off by the normalization of the path integral
formula. The term |k|(ln(2|k|/|τ | − 2π i) compensates the length scale dependence of the
zero mode normalization. It determines the relative weights of the contributions from
different topological sectors. Observe that in the general formula (4) it is assumed that
zero modes χ̂ (j)(x) are orthonormalized. If not, the matrix N (k)

A will enter this formula (see
equation (51)).

2.4. The fermion propagator S(k)(x, y; A)

It follows from the well-known solution of the 2d Dirac equation with external gauge potential
that the fermion propagator can be written as

S(k)(x, y; A) = eieα(x)S
(k)
t (x, y) e−ieα†(y) (19)

with α(x) = a(x) − iγ5b(x), where S
(k)
t (x, y) is a propagator of fermions in the background

gauge field Aµ(x), a = b = 0 from the sector with the topological charge k. There is an
explicit expression for S

(0)
t (x, y) in terms of θ -functions1 [2, 3, 16]:

S
(0)
t (x − y) =


 0 η3

L1

θ1(z−w+t̄ )

θ1(t̄)θ1(z−w)
e

2π i
|τ | (ζ−ξ)t̄

− η3

L1

θ1(z̄−w̄−t)

θ1(t)θ1(z̄−w̄)
e

−2π i
|τ | (ζ−ξ)t

0


 (20)

where w ≡ y1+iy2

L1
and ξ ≡ Im w. Note that S

(0)
t (x) becomes singular for t = 0. This

singularity is caused by the constant solution of the Dirac equation with t = 0. It represents a
zero mode in the trivial sector. In the path integral it is compensated by a zero of the Boltzmann
factor of the induced toron action: ∼ exp(�(0)[t]/2). In the sector with k > 0 the fermionic
Green function takes a form [2, 17]

S
(k)
t (x, y) = S

(0)
t (x, y)

q(k)(z)

q(k)(w)
e

iπk
|τ | (zζ−wξ)

(21)

where q(k)(z) is a function which obeys the same periodicity conditions as the functions T
(j)

k (z)

(see equation (12))

q(k)(z + 1) = q(k)(z) q(k)(z + τ ) = e−iπk(2z+τ)q(k)(z) (22)
1 In what follows we will use shorthand notation for θ -functions θα(z) ≡ θα(z|τ ) if the second argument of a theta
function is τ .
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and has no poles in z. Some examples are as follows:

q(k)(z) = θ3(z|τ/k) (23)
q

(k)
l (z) = e2π ilzθ3(kz + lτ |kτ) (24)

where l = 0, 1, . . . , k − 1. Note that any linear combination of functions (24) also obeys the
periodicity conditions (22). When k �= 0 the choice of the fermionic Green function is not
unique. All possible choices differ by the linear combination of the zero modes.

2.5. Scalar propagators on the torus

The b(x)-dependent part of the action consists of the gauge field action Sg[A] and the mass
term of �(k)

reg[A] giving together S[b] = 1/2
∫
T2

dx b(x) � (� − m2)b(x) with m2 ≡ e2/π .
The corresponding propagator satisfies the equation

�(� − m2)G(x − y) = δ(2)(x − y) − 1

L1L2
(25)

where δ(2)(x − y) is Dirac’s δ-function on the torus. It can be written as the difference
of a massless and massive propagator on the torus orthogonal to the constant functions:
G(x) = 1/m2{G0(x) − Gm(x)}. There is a closed expression in the massless case

G0(x) = − 1

2π
ln

(
η−1(τ ) e

−πζ 2

|τ | |θ1(z)|
)

. (26)

In the massive case we use the infinite sum for Gm(x) = Gm(x) + 1/m2L1L2:

Gm(x) = 1

2L1

∑
n

cosh[E(n)(L2/2 − |x2|)] e
2π in

x1
L1

E(n) sinh[L2E(n)/2]
(27)

where

E(n) =
√

4π2n2L−2
1 + m2.

2.6. Chiral condensate and two-point correlators of chiral densities

If one considers QMEV only of gauge-invariant quantities the pure gauge field a(x) may
be integrated over with no consequence and we will not consider it in future. Then in the
topological sector with the topological charge k we may write∫

Ak

DA e−S[A] . . . = e
− 2πk2

m2L1L2

∫ T1

0
dt1

∫ T2

0
dt2

∫
Db e− 1

2

∫
b(x)�2b(x) d2x . . . . (28)

The partition function (3) is a product of three factors:

Z =
∫
A0

DA e−S[A]+ 1
2 �

(0)
reg [A] = Z0ZtZM (29)

where

Z0 =
∫

Db e− 1
2

∫
d2xb(x)�

(
�−m2

)
b(x) (30)

Zt =
∫ T1

0
dt1

∫ T2

0
dt2 e

1
2 �(0)[t] = (2π)2

e2
√

2|τ |L1L2η2(τ )
(31)

ZM = e
1
2 �reg({Mj }). (32)
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The QMEV of fermion fields exhibit the mechanism of chiral symmetry breaking by an
anomaly. The configurations with k = ±1 are responsible for the formation of the chiral
condensate [3, 4, 2], which has the form

〈ψ̄(x)P±ψ(x)〉 = −η2(τ )

L1
e

2e2G(0)− 2π2

e2L1L2 (33)

where P± ≡ 1
2 (1 ± γ5), and two-point correlators of chiral densities

〈ψ̄(x)P+ψ(x)ψ̄(y)P−ψ(y)〉 = (〈ψ̄(x)P+ψ(x)〉)2 e4πGm(x−y) (34)

〈ψ̄(x)P+ψ(x)ψ̄(y)P+ψ(y)〉 = (〈ψ̄(x)P+ψ(x)〉)2 e−4πGm(x−y) (35)

get contributions from the topological sectors with k = 0 and k = 2, respectively [2, 16].
The expressions for these correlators of the SM in the infinite spacetime were first obtained
by Casher et al [22] who used the bosonization techniques in the operator formalism. The
nonvanishing 〈ψ̄(x)ψ(x)〉2 in this model was obtained for the first time by Lowenstein and
Swieca [8]. Sachs and Wipf [4] calculated the gauge-invariant chiral two-point function

S±(x, y) =
〈
ψ̄(x) eie

∫ x

y
Aα(ξ)dξαP±ψ(y)

〉
which may be related to a bound state between a static external charge and the dynamical
fermion. In this case only the sector with topological charge |k| = 1 contributes. A more
general gauge-invariant fermion two-point function

Sα,β(x, 0) = −
〈
ψα(0) eie

∫ x

0 Aµ(ξ)dξµψ̄β(x)
〉

was calculated in [7]. The gauge-invariant correlator offers a suitable framework for probing
both chiral symmetry breaking and confinement (screening) at zero and finite temperatures
through its short and large distance limits. In [13], the Euclidean path integral representation
for tunnelling Green’s functions

〈n|ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)|0〉
has been derived using clustering arguments in the infinite spacetime (here |n〉 is a vacuum
state with the winding number n).

As was mentioned above in the SM the chiral symmetry breaking occurs due to the
anomaly. This phenomenon may be relevant to the U(1) problem in QCD, although by its
nature the breakdown of the dynamical chiral symmetry in QCD which allows, e.g. to consider
the pion as a Goldstone boson is different.

Furthermore, the zero modes which play the crucial role in the formation of the chiral
condensate in the SM are irrelevant in the case of one flavour QCD with a small quark mass
where a quark condensate could be estimated via the Banks–Casher formula [23].

3. Modular transformation

Under exchange

(xi)1 ↔ (xi)2 L1 ↔ L2 t1 ↔ t2 γ1 ↔ γ2 (36)

we have a modular transformation

τ → − 1

τ
z → − z̄

τ
z̄ → z

τ
t → − t̄

τ
ζ → z̄ + z

2|τ | γ5 → −γ5. (37)
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Under this transformation we have transitions

η(τ) → η

(
− 1

τ

)
=
√

|τ |η(τ)

θ1(z|τ ) → θ1

(
− z̄

τ

∣∣∣∣− 1

τ

)
= i
√

|τ | e
iπz̄2

τ θ1(z̄|τ ) (38)

θ1(z + t̄|τ ) → θ1

(
− z̄

τ
+

t

τ

∣∣∣∣− 1

τ

)
=
√

|τ | e
πz̄2

|τ | − 2πz̄t
|τ | +

πt2

|τ | θ1(z̄ − t|τ ).

One can easily check that under modular transformation: G0(x) and S
(0)
t (x) are invariant,

there is an exchange of the zero modes of opposite chirality: χ
(j)

1 (x) ↔ φ
(j)

2 (x) and

e
iπk
|τ | zζ

θ3(z|τ/k) →
√

|τ |k e
− iπk

|τ | z̄ζ
θ3(kz̄|kτ) (39)

e
iπk
|τ | zζ

θ3(kz|kτ) →
√

|τ |
k

e
iπk
|τ | z̄ζ

θ3(z̄|τ/k). (40)

So the modular transformation acts on the fermionic Green function in the nontrivial
topological sector (21) effectively (up to a linear combination of zero modes) as a complex
conjugation.

4. General formula

The general formula which we want to prove is〈
N∏

i=1

ψ̄(xi)Pei
ψ(xi)

〉
= (〈ψ̄(x)P+ψ(x)〉)N e−4π

∑
i<j eiejGm(xi−xj ) (41)

where ei = ±(±1).
Without loss of generality we may consider two cases (N = r + s, r − s = k, s � r, r(s)

is a number of factors in the lhs of equation (41) with e = +(e = −).
(1) r = s. Only a trivial sector k = 0 contributes. From the most general formula (4) it

follows that〈
r∏

i=1

ψ̄(xi)P+ψ(xi)ψ̄(yi)P−ψ(yi)

〉
= Z−1

∫
A0

DA e−S[A]+ 1
2 �

(0)
reg [A]
∣∣ det
��S

(0)
12 (xi, yi; A)

��∣∣2.
(42)

(We omit the matrix indices 12 of the 2 × 2 fermion propagator matrix in the following for
shorthand. Since we consider only the case with k � 0 only this matrix element will be
appearing in our calculations.) With the help of equation (19) we may write

|det ‖S(xi, yj ; A)‖|2 = e2e
∑r

i=1[b(xi )−b(yi)]
∣∣ det

��S
(0)
t (xi, yj )

��∣∣2 (43)

and do the path integration over the b field with the result〈
r∏

i=1

ψ̄(xi)P+ψ(xi)ψ̄(yi)P−ψ(yi)

〉
= Z−1

t e
N

(
2e2G(0)− 2π2

e2L1L2

)

× e−4π
∑r

i<i′ Gm(xi−xi′ )−4π
∑r

j<j ′ Gm(yj−yj ′ )+4π
∑r

i=1

∑r
j=1 Gm(xi−yj )

× e4π
∑r

i<i′ G0(xi−xi′ )+4π
∑r

j<j ′ G0(yj−yj ′ )−4π
∑r

i=1

∑r
j=1 G0(xi−yj )

×
∫ T1

0
dt1

∫ T2

0
dt2
∣∣ det
∥∥S(0)

t (xi, yj )
∥∥∣∣2∣∣θ1(t̄ )

∣∣2 e−2π |τ |t̃2
1η−2. (44)
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Then the only integration which is left is the integration with respect to the toron field. From
equation (20) it follows (i, j = 1, . . . , r) that

det
��S

(0)
t (xi, yj )

�� =
(

η3

L1

)r

e
2π i
|τ |
∑r

i=1(ζi−ξi )t̄ det

∥∥∥∥ θ1(zi − wj + t̄ )

θ1(zi − wj)θ1(t̄ )

∥∥∥∥ . (45)

It can be proved that

det

∥∥∥∥ θ1(zi − wj + t̄ )

θ1(zi − wj)θ1(t̄ )

∥∥∥∥ = (−1)
r(r−1)

2

∏r
i<j θ1(zi − zj )θ1(wi − wj)

θ1(t̄)
∏r

i,j θ1(zi − wj)
θ1

(
r∑

i=1

(zi − wi) + t̄

)
.

(46)

This formula is a generalization to the torus of the Cauchy determinant formula [24]

det

∥∥∥∥ 1

zi − wj

∥∥∥∥ = (−1)
r(r−1)

2

∏r
i<j (zi − zj )(wi − wj)∏r

i,j (zi − wj)
. (47)

The proof is based on the examination of the zero and pole structure of the lhs of equation (46)
using short-distance behaviour given in the lhs of equation (47). Then one may check that
functions on both sides obey the same periodicity conditions when zi → zi + 1, wj → wj + 1
and zi → zi + τ,wj → wj + τ (standard elliptic function arguments).

Now the integration with respect to the toron field can be done with the help of the formula

∫ 1

0
dt̃1

∫ 1

0
dt̃2 e4πζ t̃1θa(z + t̄ )θa(z̄ + t) e−2π |τ |t̃2

1 = e
2πζ 2

|τ |
√

2|τ | a = 1, 3 (48)

and we obtain using equation (31)

Z−1
t

∫ T1

0
dt1

∫ T2

0
dt2
∣∣ det
∥∥S(0)

t (xi, yj )
∥∥∣∣2|θ1(t̄ )|2 e−2π |τ |t̃2

1η−2

=
(

η3

L1

)2r
1√
2|τ | e

− 2π
|τ | {
∑r

i<j [(ζi−ζj )
2+(ξi−ξj )

2]−∑r
i=1

∑r
j=1(ζi−ξj )

2}

×
∏r

i<i′ |θ1(zi − zi′)|2
∏r

j<j ′ |θ1(wj − wj ′)|2∏r
i=1

∏r
j=1 |θ1(zi − wj)|2 . (49)

If we insert this result into equation (44) and take into account equation (26) together with
equation (33) we will see that this is equation (41) for the case when r = s.

(2) r − s = k > 0. Only a sector with the topological charge k contributes and
equation (41) takes the form〈

r∏
i=1

ψ̄(xi)P+ψ(xi)

s∏
j=1

ψ̄(yj )P−ψ(yj )

〉
= (〈ψ̄(x)P+ψ(x)〉)N

× e−4π
∑r

i<i′ Gm(xi−xi′ )−4π
∑s

j<j ′ Gm(yj−yj ′ )+4π
∑r

i=1

∑s
j=1 Gm(xi−yj ). (50)

From the general formula (4) for s � 1 it follows that〈
r∏

i=1

ψ̄(xi)P+ψ(xi)

s∏
j=1

ψ̄(yj )P−ψ(yj )

〉

= Z−1Lk
1

∫
Ak

DA e−S[A]+ 1
2 �

(k)
reg [A]| det ‖(χ̂, S(k))‖|2( detN (k)

A

)−1
(51)



10286 S Azakov

where the r × r matrix ‖(χ̂ , S(k))‖ reads

‖(χ̂, S(k))‖ =




χ̂
(1)

1 (x1) . . . χ̂
(k)

1 (x1) S(k)(x1, y1; A) . . . S(k)(x1, ys; A)

...
. . .

...
...

. . .
...

χ̂
(1)
1 (xr) . . . χ̂

(k)
1 (xr) S(k)(xr, y1; A) . . . S(k)(xr, ys; A)


 . (52)

Now we may use the relation between the zero modes χ̂(x) and χ(x), equation (19), and do
the path integration over the b(x) field with the result〈

r∏
i=1

ψ̄(xi)P+ψ(xi)

s∏
j=1

ψ̄(yj )P−ψ(yj )

〉
= Z−1

t e
N

(
2e2G(0)− 2π2

e2L1L2

)

× e−4π
∑r

i<i′ Gm(xi−xi′ )−4π
∑s

j<j ′ Gm(yj−yj ′ )+4π
∑r

i=1

∑s
j=1 Gm(xi−yj )

× e4π
∑r

i<i′ G0(xi−xi′ )+4π
∑s

j<j ′ G0(yj−yj ′ )−4π
∑r

i=1

∑s
j=1 G0(xi−yj )

×
∫ T1

0
dt1

∫ T2

0
dt2

∣∣∣det
���(χ, S

(k)
t

)���∣∣∣2 . (53)

From equation (21) it follows that∣∣∣det
���(χ, S

(k)
t

)���∣∣∣2 =
(

2k

|τ |
)k/2

η6s

L2k+2s
1

e4πt̃1(
∑r

i=1 ζi−
∑s

j=1 ξj )

× e
− 2πk

|τ |
(∑r

i=1 ζ 2
i −∑s

j=1 ξ 2
j

)
−2π |τ |t̃2

1 | det ‖Mi,j‖|2 (54)

where the r × r matrix ‖Mij‖ is defined such that for 1 � j � k

Mij = T
(j)

k (zi + t̄/k) (55)

and for k + 1 � j � r

Mij = θ1(zi − wj−k + t̄ )q(k)(zi)

θ1(zi − wj−k)θ1(t̄)q(k)(wj−k)
. (56)

Now for the determinant of the matrix M the following expression can be proved:

det ‖Mi,j‖ = Ck

∏r
i<i′ θ1(zi − zi′)

∏s
j<j ′ θ1(wj − wj ′)∏r

i=1

∏s
j=1 θ1(zi − wj)

θa


 r∑

i=1

zi −
s∑

j=1

wj + t̄


 (57)

where a = 1 (3) if k is even (odd). (If s = 1 one should take 1 instead of the product∏
j<j ′ in the numerator.) For the cases r = 2, s = 1 (considered in [17]) and r = 3, s = 1

we calculated the determinant on the lhs explicitly using equations (11), (20) and (21) and
checked the formula (57).

The proof of this formula for arbitrary values of r and s is again based on the comparison
of the analytic structures and periodicity properties of both sides. The constant Ck cannot be
fixed by this consideration and in order to find it one should do some additional analysis.

Now with the help of equation (48) we can do the integration with respect to the toron
field and obtain∫ 1

0
dt̃1

∫ 1

0
dt̃2

∣∣∣det
∥∥∥(χ, S

(k)
t

)∥∥∥∣∣∣2 = |Ck|2η6s

(
2k

|τ |
)k/2 1√

2|τ |L2k+2s
1

× exp


−2π

|τ |


 r∑

i<i′
(ζi − ζi′)

2 +
s∑

j<j ′
(ξj − ξj ′ )2 −

r∑
i=1

s∑
j=1

(ζi − ξj )
2






×
∏r

i<i′ |θ1(zi − zi′)|2
∏s

j<j ′ |θ1(wj − wj ′)|2∏r
i=1

∏s
j=1 |θ1(zi − wj)|2 . (58)
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As we see for our aim it is sufficient to know only |Ck|2. In order to find it we may
use the properties which the objects entering equation (58) demonstrate under the modular
transformation considered in section 3. The lhs of equation (58) is invariant under this
transformation, so its rhs should be invariant as well. With the help of equation (26) we find
that it will really be the case if

|Ck|2 = η−(k−1)(k−2). (59)

Using this expression together with equations (58), (33) and (31) in equation (53) we will get
the desired result (50).

The case when s = 0 can be considered similarly. Now instead of the matrix (52)
we will have a matrix of the zero modes

��χ
(j)

1 (xi)
�� only. To obtain the result in this case we

may use the formula

det
���T

(j)

k (zi + t̄ /k)

���= Ck

k∏
i<j

θ1(zi − zj )θa

(
k∑

i=1

zi + t̄

)
(60)

where a = 1 (3) if k is even (odd). This formula can be proved by the same method as
formula (57).

5. Conclusions

Many interesting features of the SM on a torus are related to the fact that on the torus one can
separate in a simple manner the zero modes from the other degrees of freedom. They need
a special treatment in quantum theory and contribute to correlation functions of the fermion
fields. The role of the zero modes in the chiral symmetry breaking by an anomaly and in the
occurrence of clustering becomes particularly transparent.

The dynamics of the toron field is determined by the action �(0)[t], which is induced by
the effect of this field on the fermions. It controls infrared singularities. The averaging with
respect to the toron field assures a translation-invariant distribution of the symmetry breaking
zero modes in the topologically nontrivial sectors.

We see from equation (41) that the torus (finite temperature and finite size) result can be
obtained from infinite plane (zero temperature and infinite size) result [7] just by replacing
the infinite plane chiral condensate and free massive boson Green’s function by their torus
counterparts.

Knowledge of the exact expressions of the N-point correlators is necessary to find the
finite temperature spectral functions and offers important information related to the symmetry
problems [25].

There are several interesting issues possible for further investigation.
One can extend our consideration to the case of the still exactly soluble geometric

(Nf = 2) [3] and multiflavour (Nf is arbitrary) massless SM [26], where in the spectrum in
addition to one massive particle there appears an iso-spin multiplet of massless particles. In
this case the factor Nf which appears in the toron action will change the character of the toron
integration considerably and hence their dynamical role.

The general formula (41) which we obtained in the present work is extremely useful for
the consideration of the two-dimensional QED with one flavour massive fermions (massive
SM). This model is not exactly soluble but one can do the perturbation expansion in the
fermion mass following the approach developed in [27].

Perturbation theory in fermion masses cannot be employed in the Nf � 2 case as physical
quantities are not analytic in fermion mass at T = 0 [28, 29]. In this case it can be applied only
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to the high-temperature regime. In papers [29] QED2 with massive fermions on a circle has
been investigated by the method of Abelian bosonization. We believe that new results in QED2

with massive N-flavour fermions will help us to understand how the effect of quark masses
modifies the vacuum structure, meson masses, mixing and the pattern of chiral symmetry
breaking.

Another interesting problem is to consider SM on a torus at finite density [30] and find
how the chemical potential will enter into our general formula (41).

A detailed discussion of different limits L1, L2 → ∞ is done in the appendix. For an
useful discussion related to this problem see [6].

Although the present calculations have been done for a simple two-dimensional Abelian
model we hope that they further our intuition needed to understand non-perturbative physics
of realistic theory such as QCD [31]. They could be useful for comparison with the results
obtained by the authors who do lattice simulations of the SM [9].

Recently, a systematic comparison between SM on a torus in the present Euclidean (path
integral) approach and SM on a circle in a Hamiltonian (canonical) approach [32, 33] has been
fulfilled [11]. It is worthwhile to mention that the general formula (41) can also be obtained
in the second approach.
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Appendix. Thermodynamic and zero-temperature limits

In the thermodynamic limit when L1 tends to infinity or |τ | → 0 (L2 ≡ β = T −1) we will
get from Gm(x) the propagator Dm,β(x) of the free massive particles at finite temperatures in
infinite space, which can be expressed in three different forms:
as power series:

Gm(x) ≈ Dm,β(x) = 1

2π

∞∑
n=−∞

K0

(
m

√
(x2 − nβ)2 + x2

1

)
(A.1)

where K0(x) is the McDonald function,

Dm,β(x) = 1

β

∞∑
n=−∞

e
−Ẽ(n)|x1|−2π in

x2
β

Ẽ(n)
(A.2)

where Ẽ(n) =
√

4π2n2β−2 + m2,

and as an integral:

Dm,β(x) = 1

2

∫ ∞

−∞

dk

2π
eikx1

cosh
[

β

2

√
m2 + k2

(
1 − 2 |x2|

β

)]
√

k2 + m2 sinh β

2

√
k2 + m2

. (A.3)

In order to find the propagator of free massless particles in the infinite space but at finite
temperature we can consider expression (26) in the thermodynamic limit. Taking into account
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the following approximate expressions for the θ1- and η-functions in this limit

θ1(z) ≈ 2√|τ | e
− π

4|τ | sinh
πz

|τ | η(τ) ≈ e
− π

12|τ |
√|τ | (A.4)

we obtain

G0(x) ≈ D0,β (x) = − 1

2π
ln

(
µβ

√
cosh

2πx1

β
− cos

2πx2

β

)
(A.5)

where µ is an infinitesimal mass needed for infrared regularization. Note that the same
expression can easily be obtained if we consider the limit m → 0 in expression (A.2).

The limiting expression for the chiral condensate equation (33)

〈ψ̄(x)P±ψ(x)〉 = − m

4π
eγ e−2

∑∞
l=1 K0(lmβ) = − m

4π
eγ e

− ∫∞
−∞ dk

1

(eβ

√
m2+k2 −1)

√
m2+k2 (A.6)

where γ = 0.577 21 . . . is the Euler constant, was obtained in the papers [4, 6].
In this limit for the first leading term of the propagator of fermions in the external toron

field (see equation (20)) we get

(
S

(0)
t (x)

)
12

≈ e
− 2πz

|τ |
(

t̃2− 1
2

)
+ 2π iζ

|τ | t̃2

2L2 sinh πz
|τ |

(A.7)

where we used equation (A.4) and the approximation valid for L1 → ∞

θ1(z + t̄ ) ≈ 1√|τ | e
− π

|τ | (t̄−
1
2 )

2− 2πz
|τ | (t̄− 1

2 ). (A.8)

(it is assumed that 0 < t̃2 < 1.)

Note that the proof of the formula (41) for r = s in this limiting case, where the formulae
(A.7) and (A.8) should be used, could be based on the formula

det

∥∥∥∥ 1

f (vi − uj )

∥∥∥∥ = (−1)
r(r−1)

2

∏r
i<j f (vi − vj )f (ui − uj )∏r

i,j f (vi − uj )
(A.9)

where f (z) = sinh πz/|τ | which follows directly from the Cauchy determinant formula (47)
if one takes z = e2iπv and w = e2iπu.

Of course, equation (A.9) is a particular case of formula (46), which occurs if L1 → ∞.
In order to consider the thermodynamic limit in the sectors with nontrivial topological

charge k we should know the limiting expressions for the fermionic Green’s function in these
sectors, equation (21), and the fermionic zero modes (11).

We can easily obtain the first leading terms of both objects in this limit. Using the fact
that for |τ | → 0

θ3(z) = 1√|τ | e
− πz2

|τ |
(

1 + 2e
− π

|τ | cosh
2πz

|τ | + · · ·
)

(A.10)

we get for S
(k)
t (x, y)

S
(k)
t (x, y) ≈ S

(0)
t (x, y)|L1→∞ (A.11)
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since, e.g.

q(k)(z) = θ3

(
z

∣∣∣τ
k

)
=
√

k

|τ | + · · · (A.12)

and S
(0)
t (x, y)|L1→∞ is given in equation (A.7).

For the fermionic zero modes (11) (for example, with the choice (14)) we obtain: when
k = 1

χ
(1)
1 (x) ≈

(
2

|τ |
)1/4 1

|τ |1/2L1
e

2π iζ
|τ | t̃2− 2πz

|τ | t̃2− π
|τ | t̃

2
2 +iπt̃2 t̃1 (A.13)

for 0 < t̃2 < 1
2 and

χ
(1)
1 (x) ≈

(
2

|τ |
)1/4 1

|τ |1/2L1
e

2π iζ
|τ | t̃2− 2πz

|τ | (t̃2−1)− π
|τ | (t̃2−1)2+iπt̃2 t̃1 (A.14)

for 1
2 < t̃2 < 1.
When k � 2

χ
(j)

k (x) ≈
(

2k

|τ |
)1/4 1

|τ |1/2L1
e

2π iζ
|τ | t̃2− 2πz

|τ | [t̄−(j−1)]− π
k|τ | [t̄−(j−1)]2− iπ

k
t̃2 t̃1 (A.15)

for 1 � j � k
2 + 1 and

χ
(j)

k (x) ≈
(

2k

|τ |
)1/4 1

|τ |1/2L1
e

2π iζ
|τ | t̃2− 2πz

|τ | [t̄−(j−1)]− π
k|τ | [t̄−(j−1)]2− iπ

k
t̃2 t̃1 e

− 2π
|τ |
[
t̄−(j−1)+

k
2

]
− 2πzk

|τ |

(A.16)

for k
2 + 1 < j � k.
But keeping only the first leading terms allows us to explicitly check formulae (57) and (60)

only for k = 1 and k = 2 in this limit. For k � 3 in order to do this we should keep the
appropriate number of higher-order terms in the expansions of the fermionic Green’s functions
S

(k)
t (x, y) and the fermionic zero modes, because of the nature of the expansions of θ1 and θ3

functions given in equations (A.4) and (A.10). This makes explicit checking rather difficult.
Now let us consider the zero-temperature limit L2 → ∞ (|τ | → ∞) (L1 ≡ L). The

expressions for the propagator of the free massive and massless bosons on a circle in Euclidean
time (in the infinite interval) one can get from equations (A.1)–(A.3) and (A.5) by replacing β

by L and interchanging x1 ↔ x2. Of course, the propagator of the free massless bosons in this
limit can again be obtained directly from equation (26) using the approximate expressions for
the θ1 function in the limit |τ | → ∞

θ1(z) ≈ 2e−π |τ |
4 sin πz η(τ) ≈ e− π |τ |

12 . (A.17)

The limiting expression for the chiral condensate was obtained in papers [32], and has the
form given in equation (A.6) where again β is replaced by L.

For the first leading term of the propagator of fermions in the external toron field in
zero-temperature limit we get

(
S

(0)
t (x)

)
12 ≈ e2π iz

2L sin πz
(A.18)

where equation (A.17) and the approximation valid for L2 → ∞

θ1(z + t̄ ) ≈ −i e−π |τ |
4 eiπ(z+t̄ ) (A.19)
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are used. We see that in this case the first leading term does not depend on toron field t
and the integration with respect to it in equation (49) becomes trivial (note that in this limit

|θ1(t)|2 ≈ e−π |τ |
2 +2|τ |t̃1 ).

As in the previous case the proof of the formula (41) for k = 0 in zero-temperature limit
can be based on the formula (A.9) which is also valid if f (z) = sin πz.

For nontrivial topological sectors comments similar to the case L1 →∞ could be made.
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[20] Erdélyi A (ed) 1955 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) chapter 13
[21] Joos H 1990 Helv. Phys. Acta 63 670

Joos H 1990 Nucl. Phys. Proc. Suppl. B 17 704
[22] Casher A, Kogut J and Susskind L 1973 Phys. Rev. Lett. 31 792

Casher A, Kogut J and Susskind L 1974 Phys. Rev. D 10 732
[23] Leutwyler H and Smilga A 1992 Phys. Rev. D 46 5607
[24] Stone M 1994 Bosonization (Singapore: World Scientific)



10292 S Azakov

[25] Hansson T H, Nielsen H B and Zahed I 1995 Nucl. Phys. B 451 162
[26] Gattringer C and Seiler E 1994 Ann. Phys., NY 233 97
[27] Coleman S, Jackiw R and Susskind L 1975 Ann. Phys., NY 93 267

Adam C 1997 Ann. Phys., NY 259 1
Manias M V, Naon C M and Trobo M 1994 J. Phys. A: Math. Gen. 27 923

[28] Coleman S 1976 Ann. Phys., NY 101 239
[29] Hetrick J E, Hosotani Y and Iso S 1995 Phys. Lett. B 350 92

Hosotani Y 1995 Preprint hep-th/9505168
Hosotani Y 1995 Preprint hep-ph/9510387
Rodrigues R and Hosotani Y 1996 Phys. Lett. B 375 273

[30] Sachs I and Wipf A 1996 Ann. Phys., NY 249 380
Christiansen H R and Schaposnik F A 1996 Phys. Rev. D 53 3260
Alvarez-Estrada R F and Gomez Nicola A 1998 Phys. Rev. D 57 3618

[31] Smilga A 1992 Phys. Rev. D 46 5598
[32] Manton N 1985 Ann. Phys., NY 159 220
[33] Iso S and Murayama H 1990 Prog. Theor. Phys. 84 142

Hetrick J H and Hosotani Y 1988 Phys. Rev. D 38 2621


